Multiplicative Updates for L1-Regularized Linear and Logistic Regression
نویسندگان
چکیده
Multiplicative update rules have proven useful in many areas of machine learning. Simple to implement, guaranteed to converge, they account in part for the widespread popularity of algorithms such as nonnegative matrix factorization and Expectation-Maximization. In this paper, we show how to derive multiplicative updates for problems in L1-regularized linear and logistic regression. For L1–regularized linear regression, the updates are derived by reformulating the required optimization as a problem in nonnegative quadratic programming (NQP). The dual of this problem, itself an instance of NQP, can also be solved using multiplicative updates; moreover, the observed duality gap can be used to bound the error of intermediate solutions. For L1–regularized logistic regression, we derive similar updates using an iteratively reweighted least squares approach. We present illustrative experimental results and describe efficient implementations for large-scale problems of interest (e.g., with tens of thousands of examples and over one million features).
منابع مشابه
Statistical Tests for Optimization Efficiency
Learning problems, such as logistic regression, are typically formulated as pure optimization problems defined on some loss function. We argue that this view ignores the fact that the loss function depends on stochastically generated data which in turn determines an intrinsic scale of precision for statistical estimation. By considering the statistical properties of the update variables used du...
متن کاملEfficient Elastic Net Regularization for Sparse Linear Models
We extend previous work on efficiently training linear models by applying stochastic updates to non-zero features only, lazily bringing weights current as needed. To date, only the closed form updates for the l1, l∞, and the rarely used l2 norm have been described. We extend this work by showing the proper closed form updates for the popular l22 and elastic net regularized models. We show a dyn...
متن کاملEfficient L1 Regularized Logistic Regression
L1 regularized logistic regression is now a workhorse of machine learning: it is widely used for many classification problems, particularly ones with many features. L1 regularized logistic regression requires solving a convex optimization problem. However, standard algorithms for solving convex optimization problems do not scale well enough to handle the large datasets encountered in many pract...
متن کاملAn Efficient Method for Large-Scale l1-Regularized Convex Loss Minimization
Convex loss minimization with l1 regularization has been proposed as a promising method for feature selection in classification (e.g., l1-regularized logistic regression) and regression (e.g., l1-regularized least squares). In this paper we describe an efficient interior-point method for solving large-scale l1-regularized convex loss minimization problems that uses a preconditioned conjugate gr...
متن کاملComparison of Optimization Methods for L1-regularized Logistic Regression
Logistic regression with L1-regularization has been recognized as a prominent method for feature extraction in linear classification problems. Various optimization methods for L1 logistic regression have been proposed in recent years. However there have been few studies conducted to compare such methods. This paper reviews existing methods for optimization and then tests the methods over a bina...
متن کامل